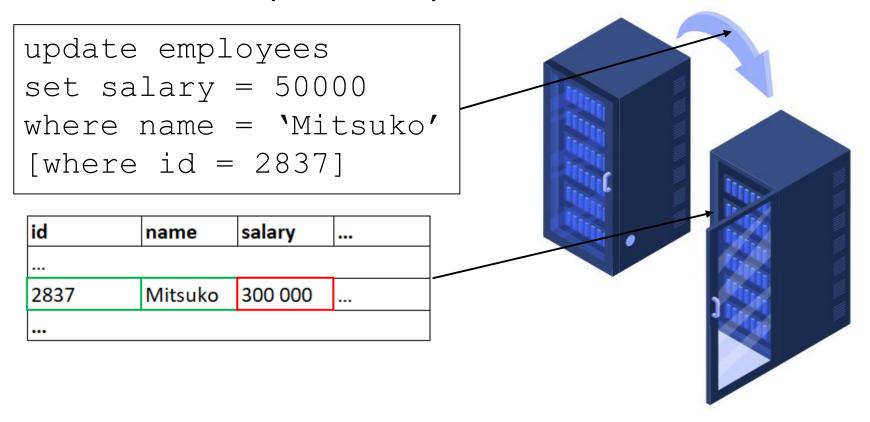
Semantic-pragmatic account of syntactic structures

Ivan Rygaev Laboratory of Computational Linguistics Institute for Information Transmission Problems RAS, Moscow irygaev@gmail.com

Logic and Engineering of Natural Language Semantics, November 18, 2023 Osaka University Nakanoshima Center, Osaka, Japan


Communication

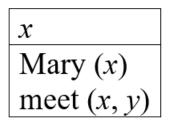
- Communication is the primary function of language
 - Information transfer from a speaker to a hearer


Information transfer

• New information should be linked to the old one: *Mitsuko's salary is 300 000 yen.*

Linguistic communication

 New information should be linked to the old one in the hearer's mind. One part of the sentence serves to find a mental file, the other – to update it.

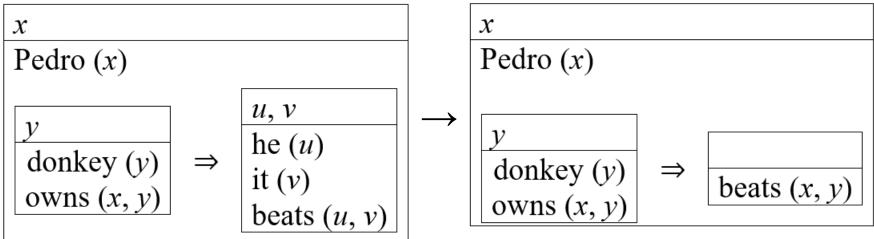

File Change Semantics

- File of cards metaphor:
 - "B's task is to construct and update a file which, at any point in the conversation, contains all the information that A has conveyed up to that point" (Heim 1982:178)
- A card corresponds to a discourse referent
- The meaning of noun phrases is procedural
 - "For every indefinite, start a new card; for every definite, update a suitable old card" (Heim 1982:179)
- Sentence meaning is its context change potential
 - It the entire file, not a sentence, which has truth conditions

Discourse Representation Theory

- Mary met a student. He needed help
- Cards:

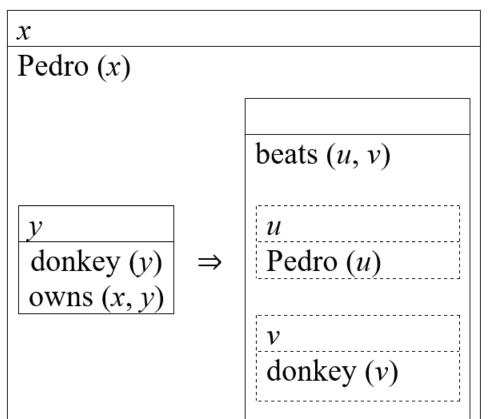
 Discourse Representation Structure (DRS, Kamp 1981):


y student (y) meet (x, y)need_help (y)

$$\begin{array}{c} x, y \\ Mary (x) \\ student (y) \\ meet (x, y) \\ need_help (y) \end{array}$$

Represents the whole discourse, aka context, aka common ground

Pronoun resolution


- Nested DRSes (local contexts) are introduced for negation, implication, disjunction, etc.
 - If Pedro owns a donkey he beats it

- he and it search for their antecedents in the context
- Both the main DRS and the local context of the implication premises are accessible for them

Definites

- The rule for pronouns has been extended to other referential expressions:
 - Definite descriptions and proper names
 - As a special case of presuppositions
 (van der Sandt 1992)
- If Pedro owns a donkey,
 Pedro beats the donkey

Presupposition projection in DRT

- First, a separate sentence DRS (preliminary DRS) is built, then it is merged into the main DRS and resolved
- Presuppositions are encoded separately in the DRS
 - Each presupposition is represented by an A-DRS, an embedded presuppositional DRS
 - A-DRSes can be embedded into one another
 - They float up through accessibility hierarchy looking for a suitable antecedent
 - If it is found the presupposition is bound to it, otherwise it can be accommodated

Specific indefinites

- Specific indefinites (van Geenhoven 1998)
 - Similar to presuppositions
 - They are interpreted not in the place they appear
 - But somewhere higher in the structure
 - They are normally accommodated rather than bound
- Are they a special type of presupposition?
- Peter intends to visit **a museum** every day
 - Has at least three different interpretations
 - Depending on the level where 'a museum' is interpreted

Backgrounding (Geurts 2010)

- Specific indefinites are not presuppositions
 - Accommodation is a repair strategy
 - It would be strange to use it normally as specifics do
- Different types of backgrounding:
 - Presuppositions
 - Specific indefinites
 - Conventional implicatures (as defined by Potts 2005)
- The Buoyancy Principle:
 - Backgrounded material tends to float up towards the main DRS.

DRSs as instructions

- A-DRSes can represent all backgrounded expressions
- But they have to be marked with their function
 - Propositional A-DRS serves to *find* a discourse referent
 - Specificity A-DRS to create a new discourse referent
 - Conventional implicature A-DRS to *update* an existing one
- Now we can call them B-DRSs (backgrounded DRS)
- Main DRS is an instruction to update the topic referent

DRSs as instructions

• Bill saw a certain picture of John, a friend of mine

update b:				
•	see (<i>b</i> , <i>p</i>)			
	find <i>b</i> :	b bill (b)		<i>b</i> , <i>p</i> , <i>j</i> , <i>i</i>
	create <i>p</i> :	$p \\ \text{picture } (p) \\ \text{of } (p, j)$		bill (b) see (b, p) picture (p) of (p, j)
		update j:	<i>i</i> friend (<i>i</i> , <i>j</i>)	john (<i>j</i>) friend (<i>i</i> , <i>j</i>)
			find j: j john (j)	
		i	i	

Syntactic structures

- The structure of a Preliminary DRS:
 - Each backgrounded constituent corresponds to a B-DRS
 - B-DRS hierarchy forms a tree
 - The tree mirrors the syntactic tree of the sentence
- Sentence production
 - The speaker intends to convey information to the hearer
 - He splits his mental Proper DRS into a set of instructions to find, create or update mental referents in the hearer's mind
 - Being dependent on one another they form a tree
 - The tree is then realized as a syntactic tree of the sentence

Communicative dependencies

- Communicative dependency [Melčuk 2001:30]:
 - In a semantic configuration $\sigma_1^{--}\sigma_2$, the semantic node σ_2 is said to depend communicatively on the semantic node σ_1 in a direct way, if this configuration can be reduced to σ_1 (rather than to σ_2) such that the meaning conveyed is simply reduced but not distorted, the referent of σ_1 remaining the same as that of the whole configuration $\sigma_1^{--}\sigma_2$.
 - (grow) \rightarrow (population)
 - [the] population's growth
 - [the] growing population
 - The Comm-dominant node of a Comm-subnetwork is an analog of the top node of a syntactic subtree; Comm-dependency is, so to speak, a way of `foreseeing,' on the semantic level, the future syntactic dependencies.

Utterances as programs

- Two steps of NLU (Davies & Isard 1972)
 - Compilation
 - Execution
 - Understanding an utterance vs carrying it out
- In our model
 - Compiling instructions = building a Preliminary DRS
 - Executing instructions = resolving B-DRSes to obtain a Proper DRS
- A book is not a knowledge base
 - It is a script to create the knowledge base

Two layers of representation

- Preliminary DRS is a representation of a sentence
 - A sequence of instructions
 - Context-independent
 - Yet context-sensitive
 - Captures information structure (to some extent)
 - Reflects the syntax on the semantic level
 - Obeys compositionality
- Proper DRS is a mental representation
 - Captures truth conditions
 - Has a model-theoretic interpretation

Application – syntactic islands

- Syntactic constructions which contain an element that cannot be extracted out of it (Newmeyer 2016):
 - *What did you take a class from [the chef that created __]?
 - *What [that Mary solved __] is likely?
 - *What were you happy [because John bought __]?
- Communicative approach:
 - Islands result from a clash in the information structure (Erteschik-Shir 1973)
 - Backgrounded constituents are islands (BCI) (Goldberg 2006)

Why BCI?

- Why are backgrounded constituents islands?
- A proposed explanation:
 - Each backgrounded constituent is a separate instruction
 - It is executed separately
 - All discourse referents it depends on must have already been found or created by other instructions
 - If that is not the case (e. g. there are vicious circles in the instruction dependencies) the set in not executable
 - Hence the sentence is uninterpretable

Challenges

- One syntax different information structure
- John bought an apple:
 - What did John do? $[John]_T$ [bought an apple]_F
 - What did John buy? [John bought]_T [an apple]_F
- Generative grammar allows for a hidden movement:
 - [John bought $__i$]_T [an apple_i]_F
 - Cf. [What John bought] is [an apple]
- The present account generates it directly, without a movement
 - Preliminary DRS corresponds to the deep structure in syntax

Challenges

- Quantifier noun phrases:
 - If they could float up as well
 - That could explain quantifier scope ambiguity
- However:
 - Quantifiers representation in the DRS does not match their syntax in the sentence
 - They does not seem to fit well into the instructional paradigm
- To incorporate them is a topic for further research

Conclusions

- Proposed a unified account of backgrounded meaning within the DRT framework
 - Presupposition
 - Specific indefinites
 - Conventional implicatures
- Proposed how the syntactic tree of the sentence arises out of knowledge in our mind
- Proposed an explanation why backgrounded constituents are syntactic islands

References

- 1. Davies, D. J. M., & Isard, S. D. (1972). Utterances as programs. *Machine intelligence, 7,* 325-339.
- 2. Erteschik-Shir N. 1973. On the nature of island constraints. PhD thesis, Dep. Foreign Lang. Linguist., MIT, Cambridge. 175 pp.
- Geurts, B. (2010). Specific Indefinites, Presupposition and Scope. *Presuppositions and Discourse: Essays Offered to Hans Kamp*, 21, 125.
- 4. Goldberg AE. 2006. Constructions at Work: The Nature of Generalization in Language. Oxford, UK: Oxford Univ. Press
- 5. Heim, I. (1982). The semantics of definite and indefinite noun phrases.
- 6. Kamp, H. (1981). A theory of truth and semantic representation. *Methods in the Study of Language Representation*.

References

- Mel'čuk, I. (2001). Communicative organization in natural language. 1-405.
- 8. Newmeyer, F. J. (2016). Nonsyntactic explanations of island constraints. *Annual Review of Linguistics, 2*, 187-210.
- 9. Potts, C. (2005). The logic of conventional implicatures (Vol. 7). OUP Oxford.
- 10. van der Sandt, R. A. (1992). Presupposition projection as anaphora resolution. *Journal of semantics*, 9(4), 333-377.
- van Geenhoven, V. (1998). Semantic incorporation and indefinite descriptions: Semantic and syntactic aspects of noun incorporation in West Greenlandic. CSLI publications.

Thanks for your attention! Questions?